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Abstract: With recent technological advancements in mobile 
devices, such as smart phones and tablets, Location-Based 
Services (LBSs) have surfaced as prominent applications in 
mobile networks. An important challenge in the wide 
deployment of location-based services (LBSs) is the privacy-
aware management of location information, providing 
safeguards for location privacy of mobile clients against 
vulnerabilities for abuse. This paper describes a scalable 
architecture for protecting the location privacy from various 
privacy threats resulting from uncontrolled usage of LBSs. 
This architecture includes the development of a personalized 
location anonymization model and a suite of location 
perturbation algorithms. In particular, our algorithm makes 
use of a variable-sized cloaking region that increases the 
location privacy of the user at the cost of additional 
computation, but maintains the same traffic cost. Our 
proposal does not require the use of a trusted third-party 
component, and ensures that we find a good compromise 
between user privacy and computational efficiency. we 
propose a user-defined privacy grid system called dynamic 
grid system (DGS); the first holistic system that fulfils four 
essential requirements for privacy-preserving snapshot and 
continuous LBS. Our experiments show that the personalized 
location k-anonymity model, together with our location 
perturbation engine, can achieve high resilience to location 
privacy threats without introducing any significant 
performance penalty. Experimental results show that our 
DGS is more efficient than the state-of-the-art privacy-
preserving technique for continuous LBS. 

Keyword: - location privacy, Dynamic grid systems, k-
anonymity, security etc….

I. INTRODUCTION 
Location-based services provide convenient information 
access for mobile users who can issue location-based 
snapshot or continuous queries to a database server at 
anytime and anywhere. Examples of snapshot queries 
include “where my nearest gas station is” and “what are the 
restaurants within one mile of my location”, while 
examples of continuous queries include “continuously 
report my nearest police car” and “continuously report the 
taxis within one mile of my car”. Although location-based 
services promise safety and convenience, they threaten the 
security and privacy of their customers. The use of LBS, 
however, can reveal much more about a person to 
potentially untrustworthy service providers than many 
people would be willing to disclose. By tracking the 
requests of a person it is possible to build a movement 
profile which can reveal information about a user’s work 
(office location), medical records (visit to specialist 
clinics), political views (attending political events), etc. 

To tackle the privacy threats in location-based services, 
several spatial cloaking algorithms have been proposed for 
preserving user location privacy The key idea of spatial 
cloaking algorithms is to blur the exact user location 
information into a spatial region that satisfies certain 
privacy requirements. Privacy requirements can be 
represented in terms of k-anonymity (i.e., a user location is 
indistinguishable among k users) and/or minimum spatial 
area (i.e., a user location is blurred into a region with a 
minimum size threshold). On the other hand, our proposed 
technique hides query contents from the LBS, and leaves 
no useful clues for determining the user’s current location. 
When a typical mobile phone accesses a third-party LBS 
provider through a wireless 3G data connection, we assume 
that it reveals only its identity and the query itself to the 
provider. Unavoidably, a mobile communications carrier is 
always aware of the user’s location based on the cell towers 
in contact, and so it must not collude with the LBS 
provider. Our assumption relies on the LBS provider not 
being integrated into the carrier’s infrastructure, such as a 
traffic reporting service using cell tower data that discovers 
a user’s location passively. 
Our assumption is valid for the vast majority of LBS 
applications, which are unaffiliated with the carrier; these 
include search portals, social applications, travel guides, 
and many other types. When communicating with such an 
application, the mobile user’s IP address is of no help in 
determining the user’s physical location, as it is 
dynamically assigned independent of location. Only a 
central gateway that is administered by the 
telecommunications carrier will be identified. We assume 
that no other information will be gleaned by the LBS 
provider. In the case where a mobile user utilizes Wi-Fi 
instead, the user will be assigned an address that points to 
the nearby access point, however, and may need to employ 
other techniques, such as Tor, to mask the address. 
In this paper, we propose a user-defined privacy grid 
system called dynamic grid system (DGS) to provide 
privacy-preserving snapshot and continuous LBS. The 
main idea is to place a semi-trusted third party, termed 
query server (QS), between the user and the service 
provider (SP). QS only needs to be semi-trusted because it 
will not collect/store or even have access to any user 
location information. Semi-trusted in this context means 
that while QS will try to determine the location of a user, it 
still correctly carries out the simple matching operations 
required in the protocol, i.e., it does not modify or drop 
messages or create new messages. An untrusted QS would 
arbitrarily modify and drop messages as well as inject fake 
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messages, which is why our system depends on a semi-
trusted QS. 
The main idea of our DGS. In DGS, a querying user first 
determines a query area, where the user is comfortable to 
reveal the fact that she is somewhere within this query area. 
The query area is divided into equal-sized grid cells based 
on the dynamic grid structure specified by the user. Then, 
the user encrypts a query that includes the information of 
the query area and the dynamic grid structure, and encrypts 
the identity of each grid cell intersecting the required 
search area of the spatial query to produce a set of 
encrypted identifiers. Next, the user sends a request 
including (1) the encrypted query and (2) the encrypted 
identifiers to QS, which is a semi-trusted party located 
between the user and SP. QS stores the encrypted 
identifiers and forwards the encrypted query to SP specified 
by the user. SP decrypts the query and selects the POIs 
within the query area from its database. For each selected 
POI, SP encrypts its information, using the dynamic grid 
structure specified by the user to find a grid cell covering 
the POI, and encrypts the cell identity to produce the 
encrypted identifier for that POI. The encrypted POIs with 
their corresponding encrypted identifiers are returned to 
QS. QS stores the set of encrypted POIs and only returns to 
the user a subset of encrypted POIs whose corresponding 
identifiers match any one of the encrypted identifiers 
initially sent by the user. After the user receives the 
encrypted POIs, she decrypts them to get their exact 
locations and computes a query answer. Because the user is 
continuously roaming she might need information about 
POIs located in other grid cells (within the query area) that 
have not been requested from QS before. The user therefore 
simply sends the encrypted identifiers of the required grid 
cells to QS. Since QS previously stored the POIs within the 
query area together with their encrypted identifiers, it does 
not need to enlist SP for help. QS simply returns the 
required POIs whose encrypted identifiers match any one 
of the newly required encrypted identifiers to the user. 
After the user received the encrypted POIs from QS, she 
can evaluate the query locally. When the user unregisters a 
query with QS, QS removes the stored encrypted POIs and 
their encrypted identifiers. In addition, when the required 
search area of a query intersects the space outside the 
current query area, the user unregisters the query with QS 
and re-issues a new query with a new query area. 
Contributions: Our DGS has the following key features: (1) 
No TTP. Our DGS only requires a semi-trusted query 
server (QS) (i.e., trusted to correctly run the protocol) 
located between users and service providers. (2) Secure 
location privacy. DGS ensures that QS and other users are 
unable to infer any information about a querying user’s 
location, and the service provider SP can only deduce that 
the user is somewhere within the user-specified query area, 
as long as QS and SP do not collude. (3) Low 
communication overhead. The communication cost of DGS 
for the user does not depend on the user-specified query 
area size. It only depends on the number of POIs in the grid 
cells overlapping with a query’s required search area. (4) 
Extensibility to various spatial queries. DGS is applicable 
to various types of spatial queries without changing the 

algorithms carried out by QS or SP if their answers can be 
abstracted into spatial regions, e.g., reverse-NN queries and 
density queries. 
 

II. RELATED WORK 
There are many researchers concentrating on the how to 
obtain the privacy and accuracy in LBSs One of the 
researchers was Dewri, who has a long history in the field 
of privacy in location-based services. He has various 
publications relating to achieving the privacy in LBSs His 
last paper [1] proposed a user-controlled privacy 
experience “a user-centric location based service 
architecture”, where the user determines the desired level 
of privacy based on his accuracy requirements. A provider 
“privacy-supportive LBS” provides supplemental 
information to the user for making “informed” privacy 
decisions. The system will inform the user of the accuracy 
(or lack thereof) based on the privacy specifications input 
into the system, depending on “a service-similarity profile” 
which the user gets. If the user is satisfied with the result 
set (even if it has errors or the privacy is under the required 
level), they can choose to proceed with the query. If they 
are not satisfied, they can change the privacy level into the 
balance of accuracy/privacy that is acceptable to them. The 
main purpose of previous papers is to understand (LBS) 
technology and identified the key components behind the 
service. Some papers present a concise survey of location 
based services, the technologies deployed to track the 
mobile user’s location, the accuracy and reliability 
associate with such measurements, and the network 
infrastructure elements deployed by the wireless network 
operators to enable these kinds of services. Other papers 
define the user requirements in terms of mobile device 
features and LBS applications. 
In addition to the general idea of the LBS, the researchers 
discussed the impact on consumer, and utility computing 
offer attractive financial and technological advantages. As 
an example, Zhang and Mao  studied the effects of three 
individual level factors; consumption values, privacy 
concerns, and subjective norms on consumers' intention to 
adopt location-based services on their mobile phones and to 
spread positive word-of-mouth (WOM) about LBS. Such 
knowledge helps business create effective communications 
to attract more potential adopters. In light of the current 
findings, marketing communications need to heighten 
perceived consumption values about using LBS.  
All these scientific papers give the attracted people a 
general idea about LBSs, and how this service was 
important. Researchers have long been aware of the 
potential privacy risks associated with LBSs, because they 
know while the user used one of these application services 
to retrieve the accuracy information, this new functionality 
comes with significantly increased risks to personal 
privacy. They have proposed a number of promising 
schemes that can help users protect their privacy. Some of 
these papers present an overview of different protection 
goals and fundamental location privacy approaches, as well 
as a classification of different types of attacks according to 
the applied attacker knowledge. They clarified different 
protection goals and fundamental location privacy 

K.B.Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 4997-5003

www.ijcsit.com 4998



approaches, as well as a classification of different types of 
attacks according to the applied attacker knowledge. The 
aim of these papers are to revisit the location privacy 
problem with the objective of providing significantly more 
stringent privacy guarantees.  
There are several works achieving privacy-preserving 
location queries while using lots of different techniques for 
securing the location privacy being highlighted. Privacy-
preserving location has three main concepts; the concept of 
dummy node, the concept of cloaking-region, and the 
concept of encryption location. However, many of these 
researches have a problem where the quality of the LBS 
and Quality of Service (QoS) decreased when anonymity is 
improved. The next sections will cover researches on these 
concepts. 
 

III. SYSTEM ARCHITECTURE 

 
Fig-1:  Architecture for DNS 

 
Fig. depicts the system architecture of our dynamic grid 
system (DGS) designed to provide privacy-preserving 
continuous LBS for mobile users. Our system consists of 
three main entities, service providers, query servers and 
mobile users. We will describe the main entities and their 
interactions, and then present the two spatial queries, i.e., 
range and k-nearest-neighbour (NN) queries, supported by 
our system. 
 Service providers (SP): Our system supports any number 
of independent service providers. Each SP is a spatial 
database management system that stores the location 
information of a particular type of static POIs, e.g., 
restaurants or hotels, or the store location information of a 
particular company, e.g., Starbucks or McDonald’s. The 
spatial database uses an existing spatial index (e.g., R-tree 
or grid structure) to index POIs and answer range queries 
(i.e., retrieve the POIs located in a certain area). As 
depicted in Fig. 1, SP does not communicate with mobile 
users directly, but it provides services for them indirectly 
through the query server (QS). Mobile users: Each mobile 
user is equipped with a GPS-enabled device that determines 
the user’s location in the form (xu, yu). The user can obtain 
snapshot or continuous LBS from our system by issuing a 
spatial query to a particular SP through QS. Our system 
helps the user select a query area for the spatial query, such 
that the user is willing to reveal to SP the fact that the user 
is located in the given area. 
A grid structure is created and is embedded inside an 
encrypted query that is forwarded to SP, it will not reveal 
any information about the query area to QS itself. In 

addition, the communication cost for the user in DGS does 
not depend on the query area size. This is one of the key 
features that distinguish DGS from the existing techniques 
based on the fully-trusted third party model. When 
specifying the query area for a query, the user will typically 
consider several factors. (1) The user specifies a minimum 
privacy level, e.g., city level. For a snapshot spatial query, 
the query area would be the minimum bounding rectangle 
of the city in which the user is located. If better privacy is 
required, the user can choose the state level as the 
minimum privacy level (or even larger, if desired). The size 
of the query area has no performance implications 
whatsoever on the user, and a user can freely choose the 
query area to suit her own privacy requirements. For 
continuous spatial queries, the user again first chooses a 
query area representing the minimum privacy level 
required, but also takes into account possible movement 
within the time period t. 
Our contribution is based on three fundamental points; 
First: while Dewri’s matrix measurements was 320 × 320 
grid covered 32 kms, where each cell reflects to 100 × 100 
m area with 124.5 KB data transferred. This measurement 
of each cell will not achieve the accuracy that the user is 
looking for, as well as providing the user with unnecessary 
needed information. Figure 3 demonstrated the major idea 
about the previous restriction. Suppose the user was in 
location (x, y) and his inquires was about some restaurant 
or coffee, Dewri’s system will provide him a matrix about 
all the red spots, which is far from his interest. In fact, what 
he need is just an information about the nearest neighbour 
from his location. As a result, we zoom this area to attain 
the goal of accuracy while maintaining the same quantity of 
transmitted data, that is described in the rectangle shape in 
the same figure. The new similarity matrix utilized the 
main concept of Dewri’s matrix 320 × 320 grid - where we 
will still in (124.5 KB) transferred data -, but each cell 
assimilates to 10 × 10 m area. This new cell will achieve 
the accuracy and efficiency results for user 

 
Fig-2: The New Region that the Similarity Matrix Should Covered 

 

When the user look for a specific location around his area, 
the application will provide the user with the necessary 
information he needs. With the advent similarity matrix, the 
user location will be exposed, thus losing his privacy. So, 
the important question comes here, how we will preserve 
the user location? This question guided us to our second 
contribution. The answer to this question will depend on 
hiding the user location by making the original location 
anonymous (x, y) to produce a new (x`, y`). The 
relationship between the coordinates exemplified in 
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Puttaswam, where he defined that the user transforms his 
real-world coordinate (x, y) to a virtual coordinate (x`, y`) 
using his secret rotation angle and secret shift (b). Fig. (2) 
Illustrates the idea of anonymous location for the user. 

 
Fig-3: Anonymous User Location. (A) Clarified the Main Idea about 
Changing User Location. (B) The Intersection   Area between Two 

Regions. 

 
Adversarial Models 
We now discuss adversarial models regarding QS and SP, 
and then present the formal security proof of our DGS in 
Section 4. A malicious QS or SP will try to break a user’s 
privacy by working with the data available to them within 
the described protocol. We do not consider QS or SP with 
access to external information not directly related to the 
protocol. User Anonymity As described above, both QS 
and SP will try to de-anonymize a user by using the 
information contained in the protocol (although they still 
faithfully follow the protocol itself). While QS does not 
have any information about a user that would allow it to 
narrow down the list of users that would fit a specific 
query, SP has access to the plaintext query of a user. This 
query, however, only contains the query region and the grid 
parameters, and with the information available, QS can 
therefore do no better than establish that the user is 
somewhere within the query region. 
One other concern regarding the de-anonymization of users 
is that if for example the services of SP are paid services, 
then SP might for example be able to link a query with a 
billing record and at least establish the presence of a user in 
a query area. While in this paper we consider it acceptable 
that a user can be located to be within a query region by QS 
(after all, the user can freely choose the query area and 
hence choose it such that her personal privacy requirements 
are met), there is other research which would allow to 
prevent the linking of a query area to a specific user 
through billing records, for example the work by Yau and 
An. So even if the SP requires the authentication of users to 
provide a (paid) service, the service can be provided while 
protecting the anonymity of the user. However, no matter 
in which way the SP provides the service, the privacy 
guarantees will always be better than TTP, as a TTP always 
knows the exact location of the users, while in our system 
neither QS nor SP know the exact location of a user. 
Regarding paid services and QS, in such a case QS does not 
have any information to narrow down the geographic 
location of a user, even if it is being used as a paid service 
and can link queries to billing records. Regarding the de-
anonymization of users, we also note that the type of POI in 
a query sent to SP or the density of POIs per cell in the 

query area, do not provide QS with any meaningful 
information that could be used to reduce the anonymity set 
of a user. Specifically, there is no correlation between the 
density of POIs in a cell and the actual location of a user, as 
the user launches a query without a-prior knowledge of the 
density of POIs, and hence the density of POIs in a cell 
cannot be used to make deductions about the possible 
location of a user in the query area. A natural choice for the 
role of QS is the network service provider of a user. Even 
though the network service provider can typically locate a 
user down to an individual cellular network cell already, 
taking on the role of QS does not provide it with any 
additional information about the user, such as the actual 
query area. There is also no requirement for the queries of a 
user to correspond to the user’s actual location, and the 
network service provider does not have any information 
available that would allow it to infer either case. To 
summarize, a network service provider already knows the 
location of its users, and serving as a QS does not provide it 
with any additional information about its users. 
Alternatively, QS services could also be provided by 
volunteers (e.g., like many of the nodes in the Tor 
network), by ad-supported services, or even by services that 
charge a modest fee. 2.1.2 Other Attacks In this subsection 
we discuss a few other attacks and explain how they relate 
to our proposed system. 
IP localization: One possible attack involves QS trying to 
determine the position of a user through IP localization 
(i.e., using a database which can map IP addresses to 
locations). Because of how mobile phone networks are 
setup (considering that our system is aimed at mobile users 
using mobile phone networks), however, mobile phones 
cannot be located with useful accuracy, as shown by 
Balakrishnan et al. [20]. Even so, if IP localization is a 
concern, solutions at the network level can hide the 
originating IP, for example by using an anonymizing 
software such as Tor.  
Timing attacks: Another set of attacks might use timing 
information if QS can observe the traffic close to the 
originating user. However, if QS can observe such traffic, 
the location privacy of the user is very likely already 
compromised, even without timing attacks. Furthermore, 
we consider this to be out of the scope of our work. 
Query server as client: QS might try to also act as a client 
in an attempt to gain some information which could help to 
localize a user. QS has no information to launch such an 
attack, however, not even an approximate location of the 
user. Also, the number of POIs returned to a client does not 
allow QS to make any inferences, because it knows neither 
the query area nor the grid parameters. A large number of 
POIs could either mean a dense region or a large query 
area, depending on the grid parameters, which are unknown 
to QS.  
Network traffic fingerprinting: An attack as described by 
Bissiaset al. which makes inferences based on the statistics 
of encrypted network connections is not applicable to our 
system. The attack as described in the paper is equivalent to 
determining which QS a user is using. This information 
does not need to be secret and communication with QS is 
highly uniform across different query servers (unlike 
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website traffic), very likely making them for all practical 
purposes indistinguishable.  
Commuter problem: Another attack that can identify the 
home and the office location of a user through location 
traces is described by Golle et al. This attack is not 
applicable to our system, because no plaintext locations are 
ever transmitted in our system and no inferences can be 
made. We exclude side-channel attacks in general from the 
security analysis as being out of the scope of this paper. 
Many of the side-channel attacks mentioned above are 
fundamental to network communications, and as such 
neither limited to nor a consequence of the design of our 
proposed protocol. 
 

IV. EXPERIMENTAL RESULTS 
Similar to continuous range queries, the privacy-preserving 
query processing for continuous k-NN queries has two 
main phases. The first phase finds an initial (or snapshot) 
answer, while the second phase maintains the correct 
answer when the user moves by using incremental updates . 
However, unlike range queries, the required search area of 
a k-NN query is unknown to a user until the user finds at 
least k POIs to compute a required search area, i.e., a 
circular area centred at the user’s location with a radius 
from the user to the Kth-nearest POI. Thus, the privacy-
preserving query processing protocol of k-NN queries is 
slightly different. 
K-Nearest-Neighbour Query Processing: A continuous K-
NN query is defined as keeping track of the K-nearest POIs 
to a user’s current location (xu, yu) for a certain time 
period, as presented in Section 2. In general, the privacy 
preserving K-NN query processing has six major steps to 
find an initial (or snapshot) query answer. Fig. 4 depicts a 
running example of the privacy-preserving query 
processing of a K-NN query, where k = 3. 
Step 1.Dynamic grid structure (by the user): This step is the 
same as the dynamic grid structure step (Step 1) in the 
range query processing phase (Section 3.1.1). It takes a 
user-specified query area with a left-bottom vertex (xb, yb) 
and a right-top vertex (xt, yt) and divides the query area 
into m×m equal-sized cells, as illustrated in Fig. 4a (m = 6). 
Step 2.Request generation (by the user): The required 
search area of the k-NN query is initially unknown to the 
user. The user first finds at least k POIs to compute the 
required search area as a circular area centred at the user’s 
location with a radius of a distance from the user to the k-th 
nearest known POI.The user therefore first attempts to get 
the nearby POIs from a specific SP. In this step, the user 
requests the POIs in the cell containing the user and its 
neighbouring cells from SP. Given the user’s current 
location (xu, yu) and a query area specified by the user in 
Step 1, she wants to get the POIs within a set of grid cells 
Sc that includes the cell containing herself, i.e., (cu, ru) = _j 
xu−xb (xt−xb)/mk , j yu−yb (yt−yb)/mk_, and its at most 
eight neighbouring cells (cu −1, ru−1), (cu, ru−1), (cu+1, 
ru−1), (cu − 1, ru), (cu + 1, ru), (cu − 1, ru + 1), (cu, ru + 
1), and (cu + 1, ru + 1). For each cell i in Sc, the user 
generates an  encrypted identifier Ci using Equations 3 and 
4, as in the request 

generation step (Step 2) in the range query processing 
phase. The user also creates a query to be sent to SP based 
on Equation 2. Finally, the user sends a request, which 
includes the identity of SP, the query, and the set of 
encrypted identifiers (in random order) Se, as given in 
Equation 5, to QS. In the running example (Fig. 4a), the 
user located in the grid cell (3, 3) and therefore requests the 
POIs in the cells (3, 3) and its neighbouring grid cells, i.e., 
(2, 2), (3, 2), (4, 2), (2, 3), (4, 3), (2, 4), (3, 4), and (4, 4), 
(represented by shaded cells) from SP through QS.  
Step 3.Request processing (by QS): This step is identical to 
Step 3 for range queries in the query processing phase 
(Section 3.1.1).  
Step 4.Query processing (by SP): This step is identical to 
Step 4 for range queries in the query processing phase 
(Section 3.1.1). Thanks to this query abstraction feature, 
our DGS can be easily extended to support other 
continuous spatial query types, e.g., reverse NN queries and 
density queries.  
Step 5.Required search area (by the user and QS): This step 
is similar to the encrypted identifier matching step (Step 5) 
for range queries in the query processing phase (Section 
3.1.1), with the difference that this step may involve several 
rounds of interaction between the user and QS. QS Matches 
the encrypted identifiers of the encrypted POIs returned by 
SP with the encrypted identifiers in Se sent by the user in 
Step 2, and sends the matching encrypted POIs to the user. 
If at least k encrypted POIs are returned to the user, she can 
decrypt them to compute a required search area for the K-
NN query in the form of a circle centred at the user’s 
location with a radius of the distance between the user and 
the Kth-nearest POI. On the other hand, if less than K POIs 
are returned, the user starts the next iteration by requesting 
the grid cells from QS one hop further away from the 
position of the user, i.e., the neighbouring cells of the grid 
cells that have already been requested by the user. This 
incremental search process is repeated (i.e., requesting 
more cells moving steadily outward from the user’s 
position) until the user has obtained at least k POIs from 
QS. After the user determines the required search area, 
there are two possibilities: 1) the user has already requested 
all the cells which intersect the required search area. In this 
case, the user proceeds to the next step. 2) The required 
search area intersects some cells which have not yet been 
requested from QS. The (at least) k POIs found so far may 
in that case not be an exact answer, and the required search 
area but have not been requested yet (in Fig. 4c these would 
be the shaded cells outside the bold rectangle). After 
receiving all encrypted POIs in the newly requested cells 
from QS, the user proceeds to the next step. In the running 
example, Fig. 4b depicts that the grid cells initially 
requested by the user (within the bold rectangle) contains 
less than three POIs. The user therefore requests the 
neighbouring grid cells (the grid cells adjacent to the bold 
rectangle) from QS. This will result in discovering three 
POIs in total, i.e., p1, p2, and p3. The user then computes 
the required search area represented by a circle (Fig. 4c). 
As the required search area intersects eight cells which the 
user has not yet requested from QS (i.e., they are outside 
the bold rectangle), the user will launch another request for 
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the grid cells (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (2, 0), (3, 0), 
and (4, 0).  
Step 6. Answer refinement (by the user). Having received 
all the POIs within all the grid cells intersecting the 
required search area, the user can decrypt them to get their 
exact locations, as in the answer computation step (Step 6) 
for range queries in the query processing phase (Section 
3.1.1), and determine the exact answer 
by selecting the k nearest POIs. The previous steps ensure 
that these k POIs are indeed the closest ones. In the running 
example (Fig. 4d), the user can find the exact answer for 
the 3-NN query, which includes three POIs p1, p2, and p4. 
3.2.2 Incremental K-NN Query Answer Maintenance After 
the user computes an initial (or snapshot) k-NN query 
answer, the incremental answer update phase allows to 
maintain the answer as the user moves around. Similar to 
range queries, the incremental answer maintenance phase 
has four steps. The first two steps are the same as the cache 
region step and the incremental request generation step as 
in Section 3.1.2. In the third step (i.e., request processing) 
performed by the QS, since QS has already cached the 
encrypted POIs, together with their corresponding 
encrypted identifiers calculated by SP in Step 4 of the 
query processing phase, it does not need to contact SP. It 
can simply forward the encrypted POIs matching one of the 
encrypted identifiers in Se to the user. In the last step (i.e., 
answer refinement) performed by the user, she decrypts the 
received POIs and sorts the ones located within the 
required search area according to their distance to the user 
in ascending order. The k-nearest POIs to the user 
constitute the new query answer. 
 

We summarize major findings from our experiments and 
the insights obtained from the experimental results in four 
points: 
1.  NBR-k out performs local-k in both success rate and 

relative anonymity level metrics without incurring 
extra processing overhead. This is due to its ability to 
anonymize larger groups of messages together at once. 

2.  The deferred search, a technique that aims at 
decreasing the number of clique searches performed in 
an effort to increase runtime performance, turns out to 
be inferior to the immediate search. This is because, 
for smaller k values, the index search and update cost 
is dominant over the clique search cost and the 
deferred search increases the size of the index due to 
batching more messages before performing the clique 
searches. 

3. The progressive search improves the runtime 
performance of anonymization, especially when 
constraint boxes and k values are large, without any 
side effects on other evaluation metrics. This nature of 
the progressive search is due to its proximity-aware 
nature: The close-by messages that are more likely to 
be included in the result of the clique search are 
considered first with the progressive search. 

4.  The Clique Cloak algorithms have the nice property 
that, for most of the anonymized messages, the 
cloaking box generated is much smaller than the 
constraint box of the received message specified by the 
tolerance values, resulting in higher relative spatial and 

temporal resolutions. In conclusion, the configuration 
of [nbr-k, immediate, progressive] is superior to other 
alternatives. 

 
V. FUTURE WORK 

Our personalized k-anonymity model requires mobile 
clients to specify their desired location anonymity level and 
their spatial/temporal tolerance constraints. It is possible 
that the level of privacy and the QoS can be in conflict in a 
user’s specification. When such conflicts occur, the success 
rate of anonymization will be low for this user’s messages. 
In practice, such conflicts should be checked to determine 
the need for fine-tuning in the privacy level or QoS. The 
trade-off between the QoS defined by the spatial/ temporal 
tolerance constraints and the level of privacy protection 
defined by the anonymity level k should be adjusted such 
that the success rate of anonymization is kept close to 1. In 
this paper, we developed a location anonymization 
framework and associated system-level facilitates for fine-
tuning of the QoS versus privacy protection trade-off. Due 
to the space constraint, we did not discuss the application-
dependent management of user involved adjustment of this 
trade-off. We believe that these issues merit an independent 
study. 
 
5.1 Optimality of the Clique Cloak Algorithms: 
It is important to note that the Clique Cloak algorithms that 
we introduced in this paper are heuristic in nature. 
Although we do not know the best success rates that can be 
achieved for various distributions of anonymity constraints, 
we experimentally showed that, for practical scenarios in 
the worst case, our algorithms drop only 10 percent of the 
messages due to non optimality. Furthermore, since it is 
extremely hard to accurately predict future patterns of 
messages, it is difficult to build an online optimal 
algorithm. These two observations lead us to the conclusion 
that our algorithms will be highly effective in practice. 
However, it is an open problem to study advanced 
algorithms that have better optimality and runtime 
performance. 
 
5.2 Pseudonymous and Non anonymous LBSs: 
In this paper, we assumed that the LBSs are anonymous; 
that is, the true identities of mobile clients are not required 
in the services provided. Services that require the 
knowledge of user identities or pseudonyms (non 
anonymous and pseudonymous LBSs) will make the 
tracking of successive messages from the same users trivial 
at the LBS side. We believe that the pseudonymous LBSs 
can benefit from our solution with some modifications. For 
instance, one complication may arise when successive 
location-identity bindings take place and the set of k 
messages from the two adjacent bindings share only one 
pseudonym, which can easily lead to a trajectory-identity 
binding. These types of vulnerabilities can be prevented or 
mitigated by setting proper time intervals for changing the 
pseudonyms associated with mobile clients, without 
violating the service requirements of the LBSs. 
Nevertheless, further research is needed for devising 
effective techniques for performing privacy-preserving 
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pseudonym updates. In the case of non anonymous LBSs, 
we believe that the location privacy protection will need to 
be guaranteed through policy-based solutions managed by 
LBS providers. Policy-based solutions require mobile 
clients to completely trust the LBS providers in order to use 
the services provided. 
After going through the surveying, it can be gathered that 
there is a huge scope of application development in mobile 
domain. Following the same notion, we can also develop 
application that can tackle following issues: 
1) Location positioning technologies  
2) Query processing 
3) Cache management 
The LBS application can help user to find hospitals, school, 
gas filling station or any other facility of interest indicated 
by user within certain range. Just like a GPS device its 
location will also be updated as soon as user changes 
his/her position. 
 

VI. CONCLUSION 
We proposed a personalized k-anonymity model for 
providing location privacy. Locations based services 
promise a very bright future considering all the key aspects   
of technologies required to operate the LBS available in the 
market. Moreover, the number of people that it can reach is 
far from expectation due to the number of mobile users 
around the world. In this paper, we proposed a supplement 
architecture which successfully solves the privacy issues in 
existing LBS applications and provides a new system, We 
developed an efficient message perturbation engine to 
implement this model. Our message perturbation engine 
can effectively anonymize messages sent by the mobile 
clients in accordance with location k-anonymity while 
satisfying the privacy and QoS requirements of the users. 
Several variations of the spatio-temporal cloaking 
algorithms, collectively called the Clique Cloak algorithms, 
are proposed as the core algorithms of the perturbation 
engine. Our work continues along a number of directions, 
including the investigation of more optimal algorithms 
under the proposed framework, the study of QoS 
characteristics of real-world LBS applications, and how 
QoS requirements impact the maximum achievable 
anonymity level with reasonable success rate. The system 
achieved better performance by not threatening the 
accuracy of the system without the requirements of 
providing results such as sparse level. Allowing the user to 
have complete flexible control over their privacy and their 
system, took the matrix to a whole new better bandwidth 
level. 
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